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LETTER TO THE EDITOR 

Phase separation in the spherical model 
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$ Ecole Polytechnique FtdCrale, Laboratoire de Physique Theorique, 14 Avenue de 
1’Eglise Anglaise, CH 1006 Lausanne, Switzerland 

Received 6 February 1979 

Abstract. The structure of the interface between phases in the spherical model of a 
ferromagnet is solved exactly. 

The structure of the interface between phases has recently been subjected to consider- 
able scrutiny (Fisk and Widom 1969, Widom 1972). A central feature is the realisation 
that the interface profile might well become diffuse, unless stabilised by gravity, for 
instance; this occurs because of thermal excitation of long-wavelength fluctuations. 
Such a phenomenon can be appreciated by studying the linearised drumhead model of 
an interface (Widom 1972), or capillary wave theories without cut-off (Buff eta1 1965). 
Its existence has recently been confirmed within the framework of the renormalisation 
group (Jasnow and Rudnick 1978, Ohta and Kawasaki 1977) for systems with n = 1, 
where n is the number of local degrees of freedom involved. 

In this Letter we present a rigorous analysis of phase separation in the spherical 
model of ferromagnetism introduced by Berlin and Kac (1952) and reviewed by Joyce 
(1972). Unlike the Ising model from which it is derived, this model can be solved 
exactly in all dimensions using a suitable translational symmetry breaking magnetic 
field h to achieve phase separation. As h > 0, the interface becomes diffuse; further, the 
surface tension tends to zero, recapturing the result of Barber and Fisher (1973). 

A number of relevant rigorous results are known for d-dimensional lattice gases and 
their Ising-model equivalents. For d = 2, the profile without stabilisation has been 
obtained explicitly (Abraham and Reed 1974, 1976); the interface is rough, meaning 
that the magnetisation does not change on the scale of the lattice spacing, but it can be 
localised by suitable ‘pinning’ forces (Abraham 1979). When d = 3 van Beijeren (1975) 
has extended the result of Dobrushin (1972) to show that for T < T, (2) the interface has 
finite width. On the other hand, convincing evidence has been given (Weeks et a1 1973) 
that the interface is rough for T > TR - T,(2), as predicted by Burton et a1 (1951) on 
heuristic grounds. These authors suggested on the basis of a mean field argument that a 
roughening transition should occur at T, (d - 1) in a d-dimensional system; the spherical 
model does not have a roughening transition for any d. 

The spherical model has the same free energy per site as the classical rotor problem 
in the n + CO limit (Stanley 1968, Kac and Thompson, unpublished). Here we have spins 
Si at each site, each with n components and length n”* coupled by a Heisenberg 
interaction. The case n = 3 is the classical Heisenberg ferromagnet. The analogy 
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between the spherical model and the rotor models with finite n appears stronger than 
with the Ising model. 

Pursuing this analogy, the interface between phases discussed here may be analo- 
gous to the Bloch wall of the associated ferromagnet; this has not been proven. 
However, there is a phenomenological theory which suggests that the Bloch wall should 
be unstable unless it is pinned (Kittel 1971; see pp 566-7 for a summary of 
phenomenology). Our results for the interface profile agree with this. 

The model is defined as follows. Consider a d-dimensional lattice with unit sides 
centred on the origin, the vertices being labelled r = (x, z )  where x labels position in the 
(d - 1)-dimensional sheet at height z. At the vertex r there is a spin s (r ) .  The energy of 
a spin configuration {s} is 

E ( { s } ) =  -J C s ( r ) s ( t ) -C  h(r)s(r) (1) 

where the first sum is over neighboring pairs. The lattice is taken to be cylindrical with 
axis (0 , l ) .  Ferromagnetism is specified by positive J. The probability of {s} is given 
canonically by 

~ ( { s } ) = ~ - ' e x p ( - ~ ) ~ ( { s } )  (2) 

where p = l / k T  is the usual notation. For the Ising model s ( r )  = f 1. Berlin and Kac 
(1952) replaced this restriction by 

--oo<s(r) <a 1 s ( r ) 2  = N (3) 
where N is the number of lattice sites. This permits one to exploit the gaussian character 
of (1) and (2). The field h(r)  is taken to be 

h(r)  = h[(l -S(z ) ) ]  sgn z .  (4) 

In the infinite lattice limit the top of the cylinder should be in the positively magnetised 
phase and vice versa. As h + 0 + one should then select the spontaneous magnetisation 
which might, of course, vanish. 

The detailed calculation of the following results, which involve nothing more than 
gaussian integration and careful implementation of (3), will be given elsewhere. 

Magnetisation profile. We have 
2.n 

s(0, z )  = (h/?rpJ) I, dw sin wz cot(&)[[ - (d  - 1) -cos U]-'  

= sgn z m(h, P>{1 - exp( - volz IN 
where 

m (h, P )  = h/2PJ(l- d )  
is the magnetisation of a homogeneous phase in a field h. The saddle point 5 (Berlin and 
Kac 1952) is given by the solution of 

2PJ = Eh/PJ(l - d)I2 + (7) 
with ( real, l> d.  the function fd(5) is given by 

J-?r '-?r \ 1 / 
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Thus the saddle point has the same location as for an isotropic system with parameters 
(h,  p ) .  The function in (8) is monotone decreasing, and for d 3 3 (integral!) remains 
finite as 5 + d + . Thus for p >fd(l)/J = pc (the critical value) the saddle point behaves 
as h + 0 as 

5-d -21h l [J (P-Pc) ] - ' / 2 .  (9) 

On the other hand, when p < pc, f - d% 0 as h + 0. From (6) there is a phase 
transition (Berlin and Kac 1952) to states with spontaneous magnetisation 

m * =  lim m ( h , p )  
h+O+ 

- P ( P  -Pc)l'/2/Pc4J. 

There is no phase transition for d = 1,2 .  
The length scale, v i 1 ,  in ( 5 )  is given by 

sinh $0, = [i(L - ~ f ) ] " ~ .  (1 1) 

Since m * > 0 for d b 3 and P > pc, and uo + 0 as h + 0 we conclude from ( 5 )  that the 
interface is rough; in particular, the result for d 3 4 violates the criterion of Burton eta1 
(195 1) since there should be a roughening transition at Tc (d - 1) > 0. Equations (7) and 
(9) show that in the critical region the length scale is the correlation length of an isotropic 
phase with parameters (h,  p ) .  

Our result does not agree precisely with the renormalisation group predictions, nor 
does it agree with the capillary wave model. Rather, it may well be an exactly solvable 
model related to a Bloch wall for n b 2. 

Pair correlation function 

where 

This result shows that a slab of matter at height z behaves as though it were taken 
from a homogeneous phase at a magnetisation ( s ( 0 , z ) )  which lies between the extreme 
values. This type of decoupling is typical of an ansatz introduced in approximate 
theories (Brown and March 1976). 

As h -* 0 in (12) the system assumes an infinite correlation length; in this model we 
cannot see an interplay between a length scale ( o i l )  imposed by the field and an 
intrinsic correlation length because the latter diverges. On the other hand, there is some 
evidence that matter in the interface has anomalously long range correlations. 
(Wertheim 1976, Weeks 1977) along the interface; this is supported by (12). 

The authors would like to thank M E Fisher, M L Glasser, H Kunz, M Kac, J L 
Lebowitz, H RavechC and B Widom very much for useful suggestions and discussions. 
D B Abraham is grateful to the EPF Lausanne, the Aspen Center for Physics, the 
Rockefeller University and Rutgers University for support while this work was carried 
out. 
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